Micro-thermography for imaging ice crystal growth and nucleation inside non-transparent materials

Author:

Zalazar Martin1ORCID,Zypman Fredy2ORCID,Drori Ran1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Stern College 1 , New York, New York 10016, USA

2. Department of Physics, Yeshiva College 2 , New York, New York 10033, USA

Abstract

Ice crystal growth and nucleation rate measurements are usually done using light microscopy in liquid and transparent samples. Yet, the understanding of important practical problems depends on monitoring ice growth inside solid materials, for example how rapid ice growth leads to structural damage of food, or how the final structure of cementitious materials is affected by ice during curing. Imaging crystal growth inside solid materials cannot be done with visible light and is intrinsically more challenging than visible light imaging. Thermography is a technique that uses thermal (infrared) cameras to monitor temperature changes in a material, and it has been used to provide a qualitative description of ice propagation with a low spatial resolution. Here, we describe a method that uses a novel micro-thermography system to image ice nucleation and growth inside non-transparent samples. This method relies on two major components: a cold stage with accurate temperature control (±0.001 °C) and a thermal camera with high spatial and temperature resolution. Our experiments include imaging of ice formation and growth in pure water first and then inside plant leaves used as a model for a non-transparent material. An ice growth rate of 2.2 mm/s was measured inside a plant leaf at −12 °C, and ice nucleation in single plant cells was observed as a hotspot having a diameter of 160 µm. The results presented here provide an experimental proof that high-quality imaging of ice growth is achievable, thus paving the way for quantitative measurements of ice growth kinetics and ice nucleation in solid materials.

Funder

National Institute of Food and Agriculture

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3