Using the petiole of the miriti palm for the core of a small wind turbine blade

Author:

Gomes I. dos S.1ORCID,Vaz J. R. P.2ORCID,Wood D. H.3ORCID

Affiliation:

1. Graduate Program in Natural Resources Engineering, Institute of Technology, Federal University of Para 1 , Belém, Pará 66075-110, Brazil

2. Graduate Program in Natural Resources Engineering, Institute of Technology, Federal University of Para 2 , Ananindeua, Pará 67130-660, Brazil

3. Department of Mechanical and Manufacturing Engineering, University of Calgary 3 , Calgary, Alberta T2N 1N4, Canada

Abstract

In many small wind turbine blades, the interior space between laminate skins is filled by a material core. The mechanical properties of the core are much less important than its density, which must be low to reduce the moment of inertia as high inertia increases both the starting time of the turbine and the gyroscopic loads on the blades. In this paper, we use, for the first time, the petiole of the miriti palm (PMP) as the core of four small blades, in order to analyze its effect on turbine starting performance. PMP is abundant in the Amazon region and harvesting it does not destroy the palm because the petiole regrows; therefore, harvesting is fully sustainable and may well have a major role in increasing the sustainability on wind turbine manufacturing. We consider the benefits of using the easily worked petiole for the core in terms of manufacturing, as demonstrated by the construction of a 0.598 m blade. PMP is less dense on average than alternative materials, such as expanded polystyrene and balsa wood. The starting performance is an important issue for small wind turbines. It is evaluated using a quasi-steady model, in which blade element momentum theory is coupled to Newton's Second Law. The low density of the small blade made using petiole of the miriti reduces the starting time by 10% when compared with expanded polystyrene and 42% when compared to balsa wood.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Natural Sciences and Engineering Research Council of Canada

Schulich Endowment of University of Calgary

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3