Axisymmetric Riemann–smoothed particle hydrodynamics modeling of high-pressure bubble dynamics with a simple shifting scheme

Author:

Wang Ping-Ping1ORCID,Zhang A-Man1ORCID,Fang Xiang-Li1ORCID,Khayyer Abbas2ORCID,Meng Zi-Fei1ORCID

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 615-8540, Japan

Abstract

High-pressure bubble dynamics often involves many complex issues, including large deformations and inhomogeneities, strong compression, moving interfaces, and large discontinuities, that bring challenges to numerical simulations. In this work, an axisymmetric Riemann–smoothed particle hydrodynamics (SPH) method is used to simulate high-pressure bubbles near different boundaries. This Riemann–SPH can adopt the real sound speed instead of the artificial one for the air phase in the bubble. Therefore, the real compressibility of the air phase can be considered, and the corresponding time step is significantly increased. To avoid unphysical interface penetration and maintain relatively homogeneous particle distribution, a new and simple particle shifting scheme for multiphase flows is proposed. Additionally, to minimize the influence of the unphysical boundary on the bubble, a large fluid domain with an optimized initial particle distribution is adopted to reduce the particle number. Several high-pressure bubbles under different boundary conditions are considered, including in a free field, near a free surface, near a solid boundary, and near a rigid sphere. Numerical results show that these bubble dynamic behaviors can be reproduced with satisfactory accuracy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

PhD Student Research and Innovation Fund of the Fundamental Research Founds

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3