Self-adapting infectious dynamics on random networks

Author:

Clauß Konstantin1ORCID,Kuehn Christian12ORCID

Affiliation:

1. Department of Mathematics, Technical University of Munich 1 , 85748 Garching bei München, Germany

2. Complexity Science Hub Vienna 2 , 1070 Vienna, Austria

Abstract

Self-adaptive dynamics occurs in many fields of research, such as socio-economics, neuroscience, or biophysics. We consider a self-adaptive modeling approach, where adaptation takes place within a set of strategies based on the history of the state of the system. This leads to piecewise deterministic Markovian dynamics coupled to a non-Markovian adaptive mechanism. We apply this framework to basic epidemic models (SIS, SIR) on random networks. We consider a co-evolutionary dynamical network where node-states change through the epidemics and network topology changes through the creation and deletion of edges. For a simple threshold base application of lockdown measures, we observe large regions in parameter space with oscillatory behavior, thereby exhibiting one of the most reduced mechanisms leading to oscillations. For the SIS epidemic model, we derive analytic expressions for the oscillation period from a pairwise closed model, which is validated with numerical simulations for random uniform networks. Furthermore, the basic reproduction number fluctuates around one indicating a connection to self-organized criticality.

Funder

Volkswagen Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference61 articles.

1. Complex adaptive systems;Daedalus,1992

2. Modelling the influence of human behaviour on the spread of infectious diseases: A review;J. R. Soc. Interface,2010

3. Epidemic processes in complex networks;Rev. Mod. Phys.,2015

4. Critical market crashes;Phys. Rep.,2003

5. Modeling the cultural evolution of language;Phys. Life Rev.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Media-driven adaptive behavior in pandemic modeling and data analysis;2024-04-19

2. A multilayer network model of interaction between rumor propagation and media influence;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-04-01

3. Perspectives on adaptive dynamical systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3