On the dissolution of a solid spherical particle

Author:

Assunção M.12ORCID,Vynnycky M.12ORCID,Moroney K. M.12ORCID

Affiliation:

1. SSPC, The SFI Research Centre for Pharmaceuticals, University of Limerick 1 , Limerick V94 T9PX, Ireland

2. Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics, University of Limerick 2 , Limerick V94 T9PX, Ireland

Abstract

The dissolution of a solid spherical particle is a canonical problem that finds many areas of application. In this work, we provide a generalized theory that takes into account the role of forced convection in the solvent (or, alternatively, the relative motion of the particle in the solvent), showing that the problem can be formulated in terms of four dimensionless parameters. Focusing on the case when one of these (the Reynolds number) is small, we consider asymptotic and numerical approaches to the problem, with a key outcome being a numerical method, implemented in the finite-element software Comsol Multiphysics, that is able to solve the resulting axisymmetric moving-boundary problem, even when over 90% of the particle has dissolved and its shape is far from spherical. We also demonstrate how this approach relates to and supersedes earlier efforts, providing a quantitative assessment of the often unquestioningly used Ranz–Marshall correlation for mass transfer from a sphere. In particular, we find that this correlation may overpredict the dissolution time by a factor of four, whereas a correlation by Clift et al. that is cited and used less often performs considerably better, even in the highly convection-dominated regime for which it was not originally intended.

Funder

Science Foundation Ireland

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3