The transition from short- to long-timescale pre-pulses: Laser-pulse impact on tin microdroplets

Author:

Meijer Randy A.12ORCID,Kurilovich Dmitry3ORCID,Eikema Kjeld S. E.12,Versolato Oscar O.12ORCID,Witte Stefan12ORCID

Affiliation:

1. Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands

2. LaserLab, Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

3. ASML Netherlands B.V., De Run 6501, 5504 DR Veldhoven, The Netherlands

Abstract

We experimentally study the interaction of intense laser pulses with metallic microdroplets and the resulting deformation. Two main droplet deformation regimes have previously been established: that of sheet-type expansion after impact of “long” (typically >10 ns) pulses governed by incompressible flow and that of spherical expansion by internal cavitation after impact of “short” (typically <100 ps) pulses governed by shock waves, i.e., strongly compressible flow. In this work, we study the transition between these regimes by scanning pulse durations from 0.5 to 7.5 ns, where the boundaries of this range correspond to the limiting cases for the employed droplet diameter of 45 [Formula: see text]m. We qualitatively describe the observed deformation types and find scaling laws for the propulsion, expansion, and spall-debris velocities as a function of pulse duration and energy. We identify the ratio of the pulse duration to the acoustic timescale of the droplet as the critical parameter determining the type of deformation. Additionally, we study the influence of fast rise times by comparing square- and Gaussian-shaped laser pulses. These findings extend our understanding of laser–droplet interaction and enlarge the spectrum of controllable target shapes that can be made available for future tin-droplet-based extreme ultraviolet sources.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3