A novel low-temperature evaporation wastewater treatment apparatus based on hydrate adsorption

Author:

Sun HuilianORCID,Wang ShuaiORCID,Sun LingjieORCID,Ling ZhengORCID,Zhang LunxiangORCID

Abstract

Heavy metal pollution is an urgent challenge worldwide due to the acceleration of industrialization. While adsorption desalination is regarded as an innovative method for wastewater treatment, the current technologies have been impeded by high costs and intensive energy consumption. In this work, a novel low-temperature evaporation wastewater treatment apparatus based on hydrate adsorption was proposed. The water vapor from wastewater evaporation reacted with CO2 to form hydrate under the pressure of 3.3 MPa, constantly promoting wastewater evaporation due to the consumption of water vapor. The effect of feeding concentration on treatment effect was analyzed in terms of removal efficiency, water yield, and enrichment factor. Remarkably, a maximum removal efficiency of 97.4% can be achieved by treating an artificial solution with a Cu2+ concentration of 500 mg/L. Furthermore, compared with the control group that only depended on evaporation and condensation without forming hydrate, the maximum water yield of purified water in the experimental group increased to 310%. This innovative design concept for a low-temperature wastewater treatment apparatus based on hydrate adsorption presents a promising solution for the green and energy-efficient treatment of heavy metal wastewater.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Dalian High-Level Talent Innovation Program

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3