Brittle to ductile transition during compression of glassy nanoparticles studied in molecular dynamics simulations

Author:

Akl Marx12ORCID,Huang Liping2ORCID,Shi Yunfeng2ORCID

Affiliation:

1. Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute 1 , 110 8th St., Troy, New York 12309, USA

2. Department of Materials Science and Engineering, Rensselaer Polytechnic Institute 2 , 110 8th St., Troy, New York 12309, USA

Abstract

Understanding how nanoparticles deform under compression not only is of scientific importance but also has practical significance in various applications such as tribology, nanoparticle-based probes, and the dry grinding of raw materials. In this study, we conducted compression tests on model brittle glassy nanoparticles using molecular dynamics simulations. We found that during the early stages of plastic deformation, shear bands formed in a similar pattern regardless of the nanoparticle size. However, as the deformation continued, dominant cracks emerged in large nanoparticles while being suppressed in smaller ones. This size-dependent brittle-to-ductile transition can be explained by a simple model based on Griffith's theory. We also investigated the effect of the surface stress state on fracture using thermally tempered nanoparticles. We observed that the presence of compressive surface stress strengthened the nanoparticle by suppressing crack formation, even when a pre-notch was present. On the other hand, tensile surface stress had the opposite effect. Interestingly, nanoparticles with both tensile and compressive surface stress promoted shear deformation, which could potentially compromise the mechanical performance of tempered glass despite delayed crack formation.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3