Thermodynamics of reversible hydrogen storage: Does alkoxy-substitution of naphthalene yield functional advantages for LOHC systems?

Author:

Verevkin Sergey P.12ORCID,Samarov Artemiy A.3ORCID,Vostrikov Sergey V.4ORCID

Affiliation:

1. Competence Centre CALOR of Faculty of Interdisciplinary Research at University of Rostock 1 , 18059 Rostock, Germany

2. Department of Physical Chemistry, Kazan Federal University 2 , 420008 Kazan, Russia

3. Saint Petersburg State University, Peterhof 3 , 198504 Saint Petersburg, Russia

4. Chemical–Technological Department, Samara State Technical University 4 , 443100 Samara, Russia

Abstract

The reversible hydrogenation/dehydrogenation of aromatic molecules, known as liquid organic hydrogen carriers (LOHCs), is considered an attractive option for the safe storage and release of elemental hydrogen. The LOHC systems based on the alkoxy-naphthalene/alkoxy-decalin studied in this work can become potentially attractive from the point of view of the thermodynamic conditions of the reversible hydrogenation/dehydrogenation processes. This work reports the results of a complex experimental investigation of the thermochemical properties of the reactants of the LOHC systems. The enthalpies of formation were measured using high-precision combustion calorimetry, the enthalpies of vaporization and sublimation were derived from the vapor pressure–temperature dependencies measured using the transpiration method, and the melting temperatures and enthalpies of fusion were measured using the differential scanning calorimetry method. The liquid-phase enthalpies of formation of methoxy- and ethoxy-substituted naphthalenes and methoxy- and ethoxy-substituted decalins were derived and used for the thermodynamic analysis of hydrogenation/dehydrogenation reactions and transferhydrogenation reactions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3