Manipulation of hot-carrier cooling dynamics in CsPbBr3 quantum dots via site-selective ligand engineering

Author:

Li Hui1ORCID,Zhang Jiachen2ORCID,Zhang Qun123ORCID

Affiliation:

1. Department of Chemical Physics, University of Science and Technology of China 1 , Hefei, Anhui 230026, China

2. Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China 2 , Hefei, Anhui 230026, China

3. Hefei National Laboratory, University of Science and Technology of China 3 , Hefei, Anhui 230088, China

Abstract

Prolonging the lifetime of photoinduced hot carriers in lead–halide perovskite quantum dots (QDs) is highly desirable because it can help improve the photovoltaic conversion efficiency. Ligand engineering has recently become a promising strategy to achieve this; nevertheless, mechanistic studies in this field remain limited. Herein, we propose a new scenario of ligand engineering featuring Pb2+/Br− site-selective capping on the surface of CsPbBr3 QDs. Through joint observations of temperature-dependent photoluminescence, ultrafast transient absorption, and Raman spectroscopy of the two contrasting model systems of CsPbBr3 QDs (i.e., capping with organic ligand only vs hybrid organic/inorganic ligands), we reveal that the phononic regulation of Pb–Br stretching at the Br-site (relative to Pb-site) leads to a larger suppression of charge–phonon coupling due to a stronger polaronic screening effect, thereby more effectively retarding the hot-carrier cooling process. This work opens a new route for the manipulation of hot-carrier cooling dynamics in perovskite systems via site-selective ligand engineering.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Innovation Program for Quantum Science and Technology

Anhui Initiative in Quantum Information Technologies

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3