Single-shot super-resolution quantitative phase imaging allowed by coherence gate shaping

Author:

Ďuriš Miroslav1ORCID,Bouchal Petr12ORCID,Chmelík Radim12ORCID

Affiliation:

1. CEITEC–Central European Institute of Technology, Brno University of Technology 1 , Purkyňova 656/123, 61200 Brno, Czech Republic

2. Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology 2 , Technická 2896/2, 61669 Brno, Czech Republic

Abstract

Biomedical and metasurface researchers repeatedly reach for quantitative phase imaging (QPI) as their primary imaging technique due to its high-throughput, label-free, quantitative nature. So far, very little progress has been made toward achieving super-resolution in QPI. However, the possible super-resolving QPI would satisfy the need for quantitative observation of previously unresolved biological specimen features and allow unprecedented throughputs in the imaging of dielectric metasurfaces. Here we present a method capable of real-time super-resolution QPI, which we achieve by shaping the coherence gate in the holographic microscope with partially coherent illumination. Our approach is based on the fact that the point spread function (PSF) of such a system is a product of the diffraction-limited spot and the coherence-gating function, which is shaped similarly to the superoscillatory hotspot. The product simultaneously produces the PSF with a super-resolution central peak and minimizes sidelobe effects commonly devaluating the superoscillatory imaging. The minimization of sidelobes and resolution improvement co-occur in the entire field of view. Therefore, for the first time, we achieve a single-shot widefield super-resolution QPI. We demonstrate here resolution improvement on simulated as well as experimental data. A phase resolution target image shows a resolving power improvement of 19%. Finally, we show the practical feasibility by applying the proposed method to the imaging of biological specimens.

Funder

Grantová Agentura České Republiky

Vysoké Učení Technické v Brně

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3