The impact of ion mobility coefficients on plasma discharge characteristics

Author:

Wang Wen-Hua1ORCID,Zhao Shu-Xia1ORCID,Dai Zhong-Ling1

Affiliation:

1. School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China

Abstract

In this paper, the high-accuracy ion mobility coefficient based on the Chapman–Enskog approximation to the solution of the Boltzmann equation for low pressure radio frequency plasma discharges is presented. We employ two-dimensional fluid simulations of the argon filled axisymmetric reactor, where the effect of new ion-kinetics-based fluid closure is compared to theoretical expressions and experimental data. The spatial profiles of plasma composition in the low pressure radio frequency capacitively coupled plasma are presented, which includes the metastable reactions in the simulation. Moreover, inelastic collision integrals terms, due to charge exchange inelastic collisions between ions and neutral species, have been also considered. A Monte Carlo simulation of kinetic ion energy distribution of impinging on the radio frequency powered electrode provides a measure of accuracy of the new transport model. From our simulation, the results that mirror the influence of ion mobility coefficient obtained by the Chapman–Enskog method on plasma physical quantities under different pressures, frequencies, and electrode gaps is in good agreement with experimental measurement results and theoretical expressions.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3