Improvement of forming-free threshold switching reliability of CeO2-based selector device by controlling volatile filament formation behaviors

Author:

Sahu Dwipak Prasad1ORCID,Park Kitae2,Han Jimin1,Yoon Tae-Sik12ORCID

Affiliation:

1. Department of Materials Science and Engineering, Ulsan National Institute of Technology, Ulsan 44919, Republic of Korea

2. Graduate School of Semiconductor Materials and Device Engineering, Ulsan National Institute of Technology, Ulsan 44919, Republic of Korea

Abstract

Diffusive memristor-based threshold switching devices are promising candidates for selectors in the crossbar memory architecture. However, the reliability and uniformity of the devices are primary concerns due to uncontrolled diffusion of metal ions in the solid electrolyte of diffusive memristors. In this study, CeO2-based selectors with Ag electrodes were demonstrated to have forming-free threshold switching characteristics. In particular, by inserting an amorphous SiO2 layer in a CeO2-based selector device, we have effectively controlled volatile filament formation that is essential for uniform and reliable switching operations. The inserted SiO2 layer acts as a barrier that could retard the migration of Ag ions and prevents the formation of strong filaments in the solid electrolyte. This enables the bilayer device to have improved uniformity and cyclic endurance. The proposed selector device, Ag/CeO2/SiO2/Pt, showed excellent DC I–V switching cycles (103), high selectivity of 104, good endurance (>104), and narrow distribution of switching voltages. These results would be helpful to implement CeO2-based threshold switching devices as selectors for high-density storage crossbar memory architectures.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3