Affiliation:
1. Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Abstract
The Raman vibrational frequency shifts of pure parahydrogen and orthodeuterium clusters of sizes N = 4–9 are calculated using the Langevin equation path integral ground state method. The shifts are calculated using three different methods; the results obtained from each are compared to experiment and variance properties are assessed. The first method requires the direct calculation of energies from two simulations: one when the cluster is in the v = 0 vibrational state and one when the cluster has v = 1 total quantum of vibration. The shift is directly calculated from the difference in those two energies. The second method requires only a v = 0 simulation to be performed. The ground state energy is calculated as usual and the excited state energy is calculated by using the distribution of the v = 0 simulation and the ratio of the density matrices between the v = 1 state and the v = 0 state. The shift is calculated from the difference in those two energies. These first two are both exact methods. The final method is based on perturbation theory where the shift is calculated by averaging the pairwise difference potential over the pair distribution function. However, this is an approximate approach. It is found that for large enough system sizes, despite the approximations, the perturbation theory method has the strongest balance between accuracy and precision when weighing against computational cost.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Research Chairs
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy