Highly accurate σ- and τ-functionals for beyond-RPA methods with approximate exchange kernels

Author:

Lemke Yannick1ORCID,Ochsenfeld Christian12ORCID

Affiliation:

1. Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München (LMU) 1 , Butenandtstr. 5–13, D-81377 Munich, Germany

2. Max-Planck-Institute for Solid State Research 2 , Heisenbergstr. 1, D-70569 Stuttgart, Germany

Abstract

σ-Functionals are promising new developments for the Kohn–Sham correlation energy based upon the direct Random Phase Approximation (dRPA) within the adiabatic connection formalism, providing impressive improvements over dRPA for a broad range of benchmarks. However, σ-functionals exhibit a high amount of self-interaction inherited from the approximations made within dRPA. Inclusion of an exchange kernel in deriving the coupling-strength-dependent density–density response function leads to so-called τ-functionals, which – apart from a fourth-order Taylor series expansion – have only been realized in an approximate fashion so far to the best of our knowledge, most notably in the form of scaled σ-functionals. In this work, we derive, optimize, and benchmark three types of σ- and τ-functionals including approximate exchange effects in the form of an antisymmetrized Hartree kernel. These functionals, based on a second-order screened exchange type contribution in the adiabatic connection formalism, the electron–hole time-dependent Hartree–Fock kernel (eh-TDHF) otherwise known as RPA with exchange (RPAx), and an approximation thereof known as approximate exchange kernel (AXK), are optimized on the ASCDB database using two new parametrizations named A1 and A2. In addition, we report a first full evaluation of σ- and τ-functionals on the GMTKN55 database, revealing our exchange-including functionals to considerably outperform existing σ-functionals while being highly competitive with some of the best double-hybrid functionals of the original GMTKN55 publication. In particular, the σ-functionals based on AXK and τ-functionals based on RPAx with PBE0 reference stand out as highly accurate approaches for a wide variety of chemically relevant problems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3