Investigation on gas–liquid–solid three-phase flow model and flow characteristics in mining riser for deep-sea gas hydrate exploitation

Author:

Guo XiaoqiangORCID,Chen XinghanORCID,Xu JieORCID,Li XinyeORCID,Nie YuxinORCID,Dai Liming

Abstract

In response to the problem of gas–liquid–solid three-phase flow in deep-sea hydrate extraction pipelines, a gas–liquid–solid three-phase flow model considering the dynamic decomposition of hydrates is established using continuity equations, momentum equations, and energy equations. The numerical solution of the theoretical model is achieved using the finite difference method. Comparing the theoretical model with the experimental results, the results showed that the average error of gas holdup, liquid holdup, solid phase content, gas phase velocity, liquid phase velocity, and solid phase velocity obtained from the theory and experiment are 8.24%, 0.41%, 1.88%, 5.80%, 2.81%, and 2.22%, respectively, which verified the correctness of the theoretical model. On this basis, the influences of hydrate abundance, liquid phase displacement, and wellhead backpressure on the gas–liquid–solid three-phase flow characteristics in the pipeline were investigated, and it was found that the gas holdup rate will increase with the increase in hydrate abundance, liquid phase displacement, and wellhead backpressure, with the influence of hydrate abundance being more sensitive. The liquid holdup rate increases with the increase in hydrate abundance and liquid phase displacement, but decreases first and then increases toward the wellhead position with the increase in wellhead backpressure. The solid phase content decreases with the increase in hydrate abundance, and first increases and then decreases toward the wellhead position as the liquid phase displacement and wellhead backpressure increase. The influence of gas phase velocity on the abundance of hydrates is relatively small, but it increases with the increase in liquid phase displacement. When the wellhead backpressure increases, the instantaneous increase then tends to flatten out. The influence of hydrate abundance on the liquid phase velocity is also relatively small, but it increases with the increase in liquid phase displacement and decreases with the increase in wellhead backpressure. The solid phase velocity will increase with the increase in hydrate abundance and liquid phase displacement, but it will not show significant changes with the change of wellhead backpressure. The research results can provide a theoretical basis for the safety of hydrate mining.

Funder

National Natural Science Foundation of China

Central Guiding Local Science and Technology Development Foud project

Natural Science Foundation Project of Hebei Provience

Natural Science Foundation Project of Sichuan Province

Open Project of Key Laboratory of Natural Gas Hydrates, the Ministry of Natural Resources

Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3