Low detection limit of uric acid based on Prussian blue-enhanced photothermal effect with microfiber knot resonator

Author:

Zhang Yangyuan1ORCID,Bai Yangbo1ORCID,Miao Yinping1ORCID,Chen Xuanyi1ORCID,Han Zhuoyang1ORCID,Yao Jianquan2

Affiliation:

1. Tianjin Key Laboratory of Film Electronic and Communication Device, School of Integrated Circuit Science and Engineering, Tianjin University of Technology 1 , Tianjin 300384, China

2. College of Precision Instrument and Optoelectronics Engineering, Institute of Laser and Opto-Electronics, Tianjin University 2 , Tianjin 300072, China

Abstract

The human serum uric acid (UA) level is a crucial indicator for diagnosing dementia in middle-aged and elderly individuals, with decreased levels being expressed in patients. Therefore, developing a high-performance sensor for online uric acid detection is of significant research interest. Herein, a microfiber knot resonator (MKR) sensor for quantitative detection of UA levels is reported. Combining polydimethylsiloxane (PDMS) with an adiabatic MKR, the specificity of UA detection in serum is improved using the photothermal effect of Prussian blue-enhanced uricase reaction. During the sensor operation, UA generates the photothermal effect under 650 nm laser irradiation, causing the PDMS film to expand with heat absorption, thereby shifting the resonance spectrum of the PDMS-MKR sensor. Experimental results demonstrate a sensitivity of 0.0559 nm/(μmol/L) within a UA concentration range of 40–120 μmol/L and a detection limit as low as 0.3578 μmol/L. The proposed sensor shows potential applications in clinical point-of-care early diagnosis and prognosis of dementia due to its specificity, fast detection speed, robustness, and high integration.

Funder

National Natural Science Foundation of China

S&T Program of Hebei, China

Open Project Program, Key Laboratory of Intelligent Detection and Equipment for Underground Space of Beijing Tianjin Hebei Urban Agglomeration

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3