Multiscale modeling of solute diffusion in triblock copolymer membranes

Author:

Cooper Anthony J.1ORCID,Howard Michael P.23ORCID,Kadulkar Sanket2ORCID,Zhao David24ORCID,Delaney Kris T.5ORCID,Ganesan Venkat2ORCID,Truskett Thomas M.26ORCID,Fredrickson Glenn H.457ORCID

Affiliation:

1. Department of Physics, University of California 1 , Santa Barbara, California 93106, USA

2. McKetta Department of Chemical Engineering, University of Texas at Austin 2 , Austin, Texas 78712, USA

3. Department of Chemical Engineering, Auburn University 3 , Auburn, Alabama 36849, USA

4. Department of Chemical Engineering, University of California 4 , Santa Barbara, California 93106, USA

5. Materials Research Laboratory, University of California 5 , Santa Barbara, California 93106, USA

6. Department of Physics, University of Texas at Austin 6 , Austin, Texas 78712, USA

7. Materials Department, University of California 7 , Santa Barbara, California 93106, USA

Abstract

We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.

Funder

U.S. Department of Energy

Welch Foundation

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grand challenges in membrane transport, modeling and simulation;Frontiers in Membrane Science and Technology;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3