Visual explanations of machine learning model estimating charge states in quantum dots

Author:

Muto Yui12ORCID,Nakaso Takumi3,Shinozaki Motoya4ORCID,Aizawa Takumi12,Kitada Takahito12,Nakajima Takashi5ORCID,Delbecq Matthieu R.5ORCID,Yoneda Jun5ORCID,Takeda Kenta5ORCID,Noiri Akito5ORCID,Ludwig Arne6ORCID,Wieck Andreas D.6ORCID,Tarucha Seigo5ORCID,Kanemura Atsunori3ORCID,Shiga Motoki789ORCID,Otsuka Tomohiro124510ORCID

Affiliation:

1. Research Institute of Electrical Communication, Tohoku University 1 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

2. Department of Electronic Engineering, Graduate School of Engineering, Tohoku University 2 , Aoba 6-6-05, Aramaki, Aoba-Ku, Sendai 980-8579, Japan

3. LeapMind 3 , 28-1 Maruyama-cho, Shibuya-ku, Tokyo 150-0044, Japan

4. WPI Advanced Institute for Materials Research, Tohoku University 4 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

5. Center for Emergent Matter Science, RIKEN 5 , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

6. Ruhr University Bochum 6 , Universitätsstraße 150, 44801 Bochum, Germany

7. Unprecedented-Scale Data Analytics Center, Tohoku University 7 , 6-3 Aoba, Aramakiaza, Aoba-ku, Sendai 980-8578, Japan

8. RIKEN Center for Advanced Intelligence Project 8 , 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

9. Graduate School of Information Science, Tohoku University 9 , 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai 980-8579, Japan

10. Center for Science and Innovation in Spintronics, Tohoku University 10 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Abstract

Charge state recognition in quantum dot devices is important in the preparation of quantum bits for quantum information processing. Toward auto-tuning of larger-scale quantum devices, automatic charge state recognition by machine learning has been demonstrated. For further development of this technology, an understanding of the operation of the machine learning model, which is usually a black box, will be useful. In this study, we analyze the explainability of the machine learning model estimating charge states in quantum dots by gradient weighted class activation mapping. This technique highlights the important regions in the image for predicting the class. The model predicts the state based on the change transition lines, indicating that human-like recognition is realized. We also demonstrate improvements of the model by utilizing feedback from the mapping results. Due to the simplicity of our simulation and pre-processing methods, our approach offers scalability without significant additional simulation costs, demonstrating its suitability for future quantum dot system expansions.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3