Particle–liquid transport in curved microchannels: Effect of particle volume fraction and size in Dean flow

Author:

Sivasankar Vishal Sankar1,Wang Yanbin1,Natu Rucha2,Porter Daniel2,Herbertson Luke2,Craven Brent A.2,Guha Suvajyoti2ORCID,Das Siddhartha1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Maryland 1 , College Park, Maryland 20742, USA

2. Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U. S. Food and Drug Administration 2 , Silver Spring, Maryland 20993, USA

Abstract

Microfluidic transport in spiral channels is a promising flow-driven mechanism for applications such as cell sorting and particle focusing. Spiral channels have unique curvature-driven flow characteristics that trigger Dean flow, forcing the liquid to be displaced toward the outer wall of the microchannel due to centrifugal force. Despite the growing popularity of these applications, there is a lack of physical understanding of such particle–fluid two-phase transport in a spiral microchannel. To address this gap, in this paper we employ a coupled particle-transport-microfluidic-flow (two-phase) computational fluid dynamics model for probing such two-phase transport in a curved microchannel that gives rise to Dean flow. Our simulations reveal that the presence of the particles has two effects: (1) they reduce the Dean flow effect of skewing the flow field toward the outer wall, that is, the flow becomes more symmetric (or the velocity maximum moves toward the center of the channel) and (2) there is a significant alteration in the vortex patterns associated with the Dean flow. We quantify the drag and lift forces experienced by the particles and propose that the corresponding particle-imparted drag and the lift forces on the continuous phase counter the effect of the curvature-driven centrifugal force on the continuous phase, thereby altering the Dean flow characteristics. Furthermore, we anticipate that such precise quantification of the forces experienced by these particles, present in finitely large concentration in microfluidic Dean flow, will be critical in designing Dean flow effect driven size-based microfluidic particle separation.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3