The effects of ventilation conditions on mitigating airborne virus transmission

Author:

Ritos KonstantinosORCID,Drikakis DimitrisORCID,Kokkinakis Ioannis WilliamORCID

Abstract

The effects of ventilation strategies on mitigating airborne virus transmission in a generic indoor space representative of a lobby area or information desk found in a hotel, company, or cruise ship are presented. Multiphase computational fluid dynamics simulations are employed in conjunction with evaporation modeling. Four different ventilation flow rates are examined based on the most updated post-COVID-19 pandemic standards from health organizations and recent findings from research studies. Three air changes per hour provide the best option for minimizing droplet spreading at reasonable energy efficiency. Thus, a higher ventilation rate is not the best solution to avoid spreading airborne diseases. Simultaneous coughing of all occupants revealed that contagious droplets could be trapped in regions of low airflow and on furniture, significantly prolonging their evaporation time. Multiphase flow simulations can help define ventilation standards to reduce droplet spreading and mitigate virus transmission while maintaining adequate ventilation with lower energy consumption. The present work significantly impacts how heat, air-conditioning, and ventilation systems are designed and implemented.

Funder

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3