Synthesis of metastable Ruddlesden–Popper titanates, (ATiO3)nAO, with n ≥ 20 by molecular-beam epitaxy

Author:

Barone Matthew R.1ORCID,Jeong Myoungho2,Parker Nicholas13,Sun Jiaxin1ORCID,Tenne Dmitri A.3ORCID,Lee Kiyoung24ORCID,Schlom Darrell G.156ORCID

Affiliation:

1. Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

2. Nano Electronics Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, South Korea

3. Department of Physics, Boise State University, Boise, Idaho 83725-1570, USA

4. Department of Materials Science and Engineering, Hongik University, 94, Wausan-ro, Mapo-gu, Seoul 04066, South Korea

5. Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

6. Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany

Abstract

We outline a method to synthesize ( ATiO3) n AO Ruddlesden–Popper phases with high- n, where the A-site is a mixture of barium and strontium, by molecular-beam epitaxy. The precision and consistency of the method described is demonstrated by the growth of an unprecedented (SrTiO3)50SrO epitaxial film. We proceed to investigate barium incorporation into the Ruddlesden–Popper structure, which is limited to a few percent in bulk, and we find that the amount of barium that can be incorporated depends on both the substrate temperature and the strain state of the film. At the optimal growth temperature, we demonstrate that as much as 33% barium can homogeneously populate the A-site when films are grown on SrTiO3 (001) substrates, whereas up to 60% barium can be accommodated in films grown on TbScO3 (110) substrates, which we attribute to the difference in strain. This detailed synthetic study of high n, metastable Ruddlesden–Popper phases is pertinent to a variety of fields from quantum materials to tunable dielectrics.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3