Frictional aging in microscale structural superlubric graphite contacts

Author:

Huang Yisheng1,Ma Ming123ORCID,Peng Deli14ORCID,Tian Kaiwen1ORCID

Affiliation:

1. Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen 1 , Shenzhen 518057, China

2. State Key Laboratory of Tribology in Advanced Equipment and Department of Mechanical Engineering, Tsinghua University 2 , Beijing 100084, China

3. Center for Nano and Micro Mechanics, Tsinghua University 3 , Beijing 100084, China

4. Department of Engineering Mechanics, Tsinghua University 4 , Beijing 100084, China

Abstract

Devices based on structural superlubricity (SSL) technology are characterized by energy efficiency, low wear, longevity, and superior performance. However, the ubiquitous phenomenon of frictional aging, where static friction increases with contact time, can lead to issues such as startup failure and return-to-origin failure in SSL devices. To date, frictional aging in SSL systems has not been studied. This paper delves into the frictional aging behavior of SSL graphite systems. Our research reveals that microscopic graphite flakes in contact with various substrate materials, including silicon, exhibit significant frictional aging from 1 to 100 s of contact time. The static friction of graphite–silicon pairs logarithmically increases with contact time and remains constant or decreases with load. Furthermore, by comparing static friction values of graphite flakes in contact with small silicon mesas and silicon flat area, we decoupled the contributions to the total static friction from the edges and in-plane area of the contact and found that in-plane contributions could be close to or even larger than edge contributions, challenging the traditional belief that friction of a graphite flake is dominated by the edges. These results enrich the basic understandings of structural superlubricity, lay the foundation for developing techniques to effectively mitigate edge effects, and provide important references for the design of future SSL devices.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Shenzhen Fundamental Research Key Project

Shenzhen Excellent Technology and Innovation Talent Development Program

GuangDong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3