Development of a Cs-free negative hydrogen ion source system using multi-pulsed plasma sources

Author:

Huh Sung-Ryul1ORCID,Jung Bong-Ki1,Jo Jong-Gab1ORCID,Park Min1ORCID,Jeong Seung Ho1,Kim Tae-Seong1,Chang Dae-Sik1

Affiliation:

1. Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea

Abstract

The Korea Atomic Energy Research Institute has recently proposed and developed a novel cesium-free negative hydrogen/deuterium ion source system based on two pulsed plasma sources for fusion and particle accelerator applications. The main feature of this ion source system is the use of both magnetic filters and plasma pulsing (also called the temporal filter). The system operates with two alternate pulsing sequences related to the respective plasma sources, thereby switching the plasmas in the after-glow state in an alternating manner. This study investigates the temporal behavior of deuterium negative ions in the system in a qualitative way by conducting a time-resolved measurement of laser photodetachment current commensurate with the negative ion density. In preliminary experiments, the current in the initial after-glow state remains higher than in the active-glow state identical to a steady-state continuous wave plasma, and the ratio reaches a maximum of about three times. This indicates that the pulsing gives highly efficient negative ion volume formation. Furthermore, it is observed that the time duration when the current is maintained at high values can be prolonged (or modulated) with the alternate dual pulsing, which is not possible with conventional single pulsing. These results provide a clue that the multi-pulsed ion source system may offer a continuous supply of negative ions at high densities and consequently become an alternative to cesium seeded ion sources.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3