Effect of surface roughness on partition of ionic liquids in nanopores by a perturbed-chain SAFT density functional theory

Author:

Shen Gulou1ORCID,Zhang Di1,Hu Yongke1,Zhang Xiaojie1,Zhou Feng1,Qian Yunhua1,Lu Xiaohua2,Ji Xiaoyan3

Affiliation:

1. National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China

2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

3. Division of Energy Science/Energy Engineering, Lulea University of Technology, 97187 Lulea, Sweden

Abstract

In this work, the distribution and partition behavior of ionic liquids (ILs) in nanopores with rough surfaces are investigated by a two-dimensional (2D) classical density functional theory model. The model is consistent with the equation of state that combines the perturbed-chain statistical associating fluid theory and the mean spherical approximation theory for bulk fluids. Its performance is verified by comparing the theoretical predictions with the results from molecular simulations. The fast Fourier transform and a hybrid iteration method of Picard iteration and Anderson mixing are used to efficiently obtain the solution of density profile for the sizable 2D system. The molecular parameters for IL-ions are obtained by fitting model predictions to experimental densities of bulk ILs. The model is applied to study the structure and partition of the ILs in nanopores. The results show that the peak of the density profile of counterions near a rough surface is much higher than that near a smooth surface. The adsorption of counterions and removal of co-ions are enhanced by surface roughness. Thus, the nanopore with a rough surface can store more charge. At low absolute surface potential, the partition coefficient for ions on rough surfaces is lower than that on smooth surfaces. At high absolute surface potential, increasing surface roughness leads to an increase in the partition coefficient for counterions and a decrease in the partition coefficient for co-ions.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3