Numerical study of continuous liquid tin jet breakup and satellite droplet formation

Author:

Zhao Zhenyu1ORCID,Li Weizhong1ORCID

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

This study proposed a velocity modulation model in which the main flow and perturbation were defined as velocity inlet boundary conditions to simulate liquid tin jet breakup into droplets with external disturbances. The volume of the fluid method was implemented for interface tracking, and adaptive mesh refinement was adopted to guarantee the accuracy of perturbation evolution at the interface during numerical iterations. When the dimensionless wave number is 0.7, almost no satellite droplets are formed. However, when the dimensionless wave number decreases to 0.51, satellite droplets are generated evidently and exhibit from backward-merging to forward-merging with the primary droplets as the disturbance amplitude increases. From the velocity profile, the jet evolution can be divided into three regions: non-breakup, droplet streams, and breakup-merging regime. The droplet sequence uniformity is poor with a small disturbance amplitude. Compared with the conventional velocity modulation model, the proposed model can describe the transition of satellite droplets from backward-merging to forward-merging with increased disturbance amplitude. If the dimensionless wave number is higher than 0.3, only forward-merging occurs with large disturbance amplitudes. Furthermore, in the condition that the dimensionless wave number decreases to 0.25 and below, satellite droplets merge forward and backward simultaneously. Increasing the disturbance amplitude makes the mergence of satellite droplets with the main droplet significantly faster when the dimensionless wave number is 0.3 or below. On the contrary, if the dimensionless wave number is more significant than 0.38, the mergence of satellite droplets slows down with the increase in the disturbance amplitude.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3