The deposition properties of tetrahedral amorphous carbon coatings deposited on piston ring: Molecular dynamics simulation

Author:

Zhao Xiaowei1ORCID,Lü Yanjun1ORCID,Chen Ruibo1ORCID,Yang Xinliang1ORCID,Zhang Yongfang2ORCID,Kang Jianxiong3ORCID

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology 1 , Xi’an 710048, China

2. School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology 2 , Xi’an 710054, China

3. School of Mechanical and Electrical Engineering, Lanzhou University of Technology 3 , Lanzhou 730050, China

Abstract

The tetrahedral amorphous carbon (ta-C) coatings are deposited on piston rings to improve the tribological property of the piston ring-cylinder liner system of the internal combustion engines. The deposition parameters are optimized by molecular dynamics simulation to reduce the cost of coatings’ fabrication. The ta-C coatings with higher sp3 fraction, lower friction coefficient, and superior anti-wear properties are achieved by optimizing the incident energy and substrate temperature of carbon atoms. The second nearest-neighbor modified embedded-atom method potential and Tersoff potential are used to describe the interatomic interactions. The effects of the incident energy of the carbon atoms and substrate temperature on the deposition properties of the ta-C coatings are discussed. The numerical results show that the ta-C coatings with high sp3 fraction, high density, and good interface mixing are obtained, and the deposition properties of the ta-C coatings are improved.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province of Chian

Open Project of State Key Laboratory for Manufacturing Systems Engineering

Open Project Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3