Affiliation:
1. Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125, USA
Abstract
The study of quantum correlation sets initiated by Tsirelson in the 1980s and originally motivated by questions in the foundations of quantum mechanics has more recently been tied to questions in quantum cryptography, complexity theory, operator space theory, group theory, and more. Synchronous correlation sets introduced by Paulsen et al. [J. Funct. Anal. 270, 2188–2222 (2016)] are a subclass of correlations that has proven particularly useful to study and arises naturally in applications. We show that any correlation that is almost synchronous, in a natural ℓ1 sense, arises from a state and measurement operators that are well-approximated by a convex combination of projective measurements on a maximally entangled state. This extends a result of Paulsen et al. [J. Funct. Anal. 270, 2188–2222 (2016)] that applies to exactly synchronous correlations. Crucially, the quality of approximation is independent of the dimension of the Hilbert spaces or of the size of the correlation. Our result allows one to reduce the analysis of many classes of nonlocal games, including rigidity properties, to the case of strategies using maximally entangled states that are generally easier to manipulate.
Funder
National Science Foundation
Air Force Office of Scientific Research
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献