Study of atomic spectroscopy and electron collision process in non-ideal classical plasmas

Author:

Chen Zhan-Bin1ORCID

Affiliation:

1. School of Science, Hunan University of Technology , Zhuzhou 412007, People's Republic of China

Abstract

This manuscript presents an approach to the calculation of atomic properties and the electron collision excitation process in a non-ideal classical plasma, based on the relativistic distorted wave methodology. The method incorporating the pseudopotential obtained from a sequential solution of the Bogolyubov chain equations, that yields modification term to the calculation of the central field potential, is employed to characterize the interactions among the charged particles in plasmas. The bound/continuous state wave functions and the electron collision excitation matrix elements are determined using the aforementioned pseudopotential within a relativistic Dirac–Coulomb atomic structure framework. Systematic investigations on the effects of non-ideality of plasma on the electronic structures, radiative properties, and excitation cross sections within a selected temperature and density range are carried out in the specific cases of H atom and Ca18+ ion as they make it possible to reproduce the reference data well and thus to conclude with the reliability of the (present) method developed. Apart from its fundamental importance, this study is essential for several applications, especially for the analysis of atomic processes in non-ideal plasmas, and offers a new perspective for the calculation of atomic properties under different conditions in various astrophysical and laboratory plasmas.

Funder

Natural Science Foundation of Hunan Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3