Apparatuses for verifying the precision of gravimeters with lifting spherical source masses

Author:

Mao Qiangbing1,Xu Hao1ORCID,Cheng Yuan1,Liu Ruiqi1,Huang Tong1,Huang Jiaojiao1,Li Qing1ORCID

Affiliation:

1. MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

Abstract

Two apparatuses with lifting spherical source masses are built and used to verify the precision of gravimeters. The 333-kg source mass produces a maximum acceleration of 200 nm/s2 with an uncertainty of 0.31 nm/s2, which corresponds to a relative uncertainty of 0.16%. After evaluating the temperature effect, drift of the gravimeter, the atmospheric effect, and the tidal effect, a combined uncertainty of 1 nm/s2 is obtained. One CG6 gravimeter is tested using two apparatuses, the measured accelerations agree with the theoretical values within the error range. Differential measurement with two CG6 gravimeters on one apparatus is performed, which provides a common-mode rejection of the effects due to ambient noise, such as the gravity tide, atmospheric effect, and drift. The difference in acceleration measured by the two gravimeters is determined to be 199 ± 6 nm/s2, which agrees well with the value 200 ± 1 nm/s2 obtained by using apparatus II. Our apparatuses provide a verification of the precision of gravimeters with an uncertainty of 1 nm/s2, which is one of the lowest uncertainties reached so far. The determination of geometrical metrology and mass distribution and detailed error analysis are presented. The methods on error analysis as well as differential measurement used in our work are helpful for gravity measurement.

Funder

National Natural Science Foundation of China under Grant

Young Top-Notch Talent Cultivation Program of Hubei Province

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3