Affiliation:
1. Sandia National Laboratories , Albuquerque, New Mexico 87185, USA
Abstract
The ability to visualize x-ray and neutron emission from fusion plasmas in 3D is critical to understand the origin of the complex shapes of the plasmas in experiments. Unfortunately, this remains challenging in experiments that study a fusion concept known as Magnetized Liner Inertial Fusion (MagLIF) due to a small number of available diagnostic views. Here, we present a basis function-expansion approach to reconstruct MagLIF stagnation plasmas from a sparse set of x-ray emission images. A set of natural basis functions is “learned” from training volumes containing quasi-helical structures whose projections are qualitatively similar to those observed in experimental images. Tests on several known volumes demonstrate that the learned basis outperforms both a cylindrical harmonic basis and a simple voxel basis with additional regularization, according to several metrics. Two-view reconstructions with the learned basis can estimate emission volumes to within 11% and those with three views recover morphology to a high degree of accuracy. The technique is applied to experimental data, producing the first 3D reconstruction of a MagLIF stagnation column from multiple views, providing additional indications of liner instabilities imprinting onto the emitting plasma.
Funder
U.S. Department of Energy
Sandia National Laboratories
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献