Sub-grid modeling of pitch-angle diffusion for ion-scale waves in hybrid-Vlasov simulations with Cartesian velocity space

Author:

Dubart M.1ORCID,Battarbee M.1ORCID,Ganse U.1ORCID,Osmane A.1ORCID,Spanier F.2ORCID,Suni J.1ORCID,Johlander A.13ORCID,Alho M.1ORCID,Bussov M.1ORCID,Cozzani G.1ORCID,George H.1ORCID,Grandin M.1ORCID,Horaites K.1ORCID,Papadakis K.1ORCID,Pfau-Kempf Y.1ORCID,Tarvus V.1ORCID,Turc L.1ORCID,Zaitsev I.1ORCID,Zhou H.1ORCID,Palmroth M.14ORCID

Affiliation:

1. Department of Physics, University of Helsinki, P.O. Box 68, 00014 Uusimaa, Finland

2. Center for Astronomy, Institute for Theoretical Astrophysics, Heidelberg University, 69120 Heidelberg, Germany

3. Swedish Institute of Space Physics, P.O. Box 537, SE-751 21 Uppsala, Sweden

4. Space and Earth Observation Centre, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland

Abstract

Numerical simulations have grown to play a central role in modern sciences over the years. The ever-improving technology of supercomputers has made large and precise models available. However, this accuracy is often limited by the cost of computational resources. Lowering the simulation's spatial resolution in order to conserve resources can lead to key processes being unresolved. We have shown in a previous study how insufficient spatial resolution of the proton cyclotron instability leads to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to larger than expected temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a sub-grid numerical model to introduce pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where the relevant wave–particle interactions were previously not correctly resolved. We show that the method is successfully able to isotropize loss-cone shaped velocity distribution functions, and that this method could be applied to simulations in order to save computational resources and still correctly model wave–particle interactions.

Funder

European Research Council

Academy of Finland

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3