On the interfacial dynamics and capillary waves during impingement of a drop on liquid pool: A background-oriented schlieren study at low Weber numbers

Author:

Shahdhaar Mohammad Autif1ORCID,Srivastava Atul2ORCID,Singh Suneet3ORCID

Affiliation:

1. Center for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India

2. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

3. Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Abstract

Understanding the dynamics of a droplet impinging on a liquid pool and the associated phenomena have been of interest due to its prevalence in nature as well as in technical applications. This paper aims toward studying the characteristics of the capillary waves generated due to the low Weber number droplet interactions with the liquid pool. In this direction, experiments have been carried out for six different pool heights varying from h =  1.4 to 12 mm, encompassing thin liquid film, shallow pool, and deep pool regimes. Due to its wide usage, water has been chosen as the fluid of interest for droplet as well as for pool liquid. The study is focused on droplets impinging on the liquid pool at low Weber number ranging from 1 to 100. In order to characterize the post-impact perturbations in the liquid, background oriented schlieren (BOS) technique has been employed which offers real-time, non-intrusive whole-field measurements of the perturbations in the liquid pool. Measurements from BOS have been validated against the side-view projection of the impact. The transient variations of the air–water interface for different pool regimes and Weber numbers have been delineated. Results evince the formation of secondary wave at impact followed by the formation of primary wave after the crater retraction. The wave formation was faster and had higher amplitude in thin liquid regime for droplets with the same Weber number compared to the other regimes, but the perturbations were reduced through higher dissipation. The formation of the Worthington jet was seen in shallow and deep pool regimes for droplets with higher Weber number ( We =  100), and its effect on the capillary wave is also discussed.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3