Interplay of fluid rheology and micro-patterning toward modulating draining characteristics on an inclined substrate

Author:

Das Arka1ORCID,Kumar Avinash2ORCID,Bakli Chirodeep2ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur 1 , Kharagpur 721302, India

2. Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur 2 , Kharagpur 721302, India

Abstract

We investigate a gravity-driven thin film flow of a non-Newtonian liquid over an inclined micro-patterned surface. We demonstrate the effect of micro-patterning on the film draining rate and the velocity profile by varying the relative slit width (Tr) and the length of the periodic irregularities (L). We unveil the interplay of the substrate structure and the fluid rheology by modeling the non-Newtonian thin film using the Carreau model, and the rheology of the film is varied for different values of power index n. Through numerical simulations, we delineate the effects of inertia, viscous, and capillary forces on the physics of thin film flow. We report a significant augmentation of flow velocity for both shear-thinning and shear-thickening fluids as a result of substrate micro-patterning, with the relative slit width playing a dominant role while the length of the periodic irregularities has only a minor influence on drainage characteristics. However, when the sole effect of fluid rheology is considered, flow velocity enhances for pseudoplastic fluid and decreases for dilatant fluid in comparison to Newtonian fluid. We examine the combined effect of rheology and substrate topography, revealing the dominating influence of micro-patterning at high slit-widths, while the fluid rheology has a greater role to play at lower slit-widths. We also demonstrate that the susceptibility of flow physics on varying rheology or topography is greatest for low viscosity liquids. Finally, we mark different regimes where the augmentation of average velocity and surface velocity are individually achieved. Hence, we propose a suitable combination of substrate structure and fluid rheology to engineer a flow characteristic. Based on the suitability for various applications, we provide the key to simultaneously optimizing the fluid rheology and substrate micro-patterning for precise engineering and controlling the draining characteristics of a thin film.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3