Explosive synchronization in a turbulent reactive flow system

Author:

Joseph Amal1ORCID,Pavithran Induja23ORCID,Sujith R. I.23ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering 1 , Trivandrum 695016, India

2. Department of Aerospace Engineering, Indian Institute of Technology Madras 2 , Chennai 600036, India

3. Centre of Excellence for Studying Critical Transition in Complex Systems, Indian Institute of Technology Madras 3 , Chennai 600 036, India

Abstract

The occurrence of abrupt dynamical transitions in the macroscopic state of a system has received growing attention. We present experimental evidence for abrupt transition via explosive synchronization in a real-world complex system, namely, a turbulent reactive flow system. In contrast to the paradigmatic continuous transition to a synchronized state from an initially desynchronized state, the system exhibits a discontinuous synchronization transition with a hysteresis. We consider the fluctuating heat release rate from the turbulent flames at each spatial location as locally coupled oscillators that are coupled to the global acoustic field in the confined system. We analyze the synchronization between these two subsystems during the transition to a state of oscillatory instability and discover that explosive synchronization occurs at the onset of oscillatory instability. Further, we explore the underlying mechanism of interaction between the subsystems and construct a mathematical model of the same.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3