Effects of supercritical CO2 fluids on pore structure and fractal characteristics of bituminous coal

Author:

Su ErleiORCID,Wei Jiaqi,Chen XiangjunORCID,Liang YunpeiORCID,Yang Kang,Chen Haidong,Li LinORCID,Wang Lin

Abstract

Enhanced coalbed methane recovery with CO2 coal seam storage (CO2-ECBM) technology is an important way to achieve China's strategic goals of carbon peak and carbon neutrality. Presently, to date there has been rarely research conducted on the effect of coal sample scale on pore structure under supercritical CO2 (ScCO2) fluids. In this study, a high-pressure geological environment simulation system was adopted to analyze coal samples of different scales for ScCO2 saturation. Subsequently, low-pressure nitrogen gas adsorption (LP-N2GA), mercury intrusion porosimetry (MIP), and low-field nuclear magnetic resonance (LF-NMR) were used to analyze the pore structure and fractal dimension changes in saturated coal samples at different scales. The experimental results show that the mesopore ratios of cylindrical and granular coal decrease by an average of 1.68% and 2.30%, respectively, after the saturation of ScCO2. The proportion of macropores in cylindrical coal increased by an average of 5.50% after ScCO2 saturation, while the proportion of macropores in granular coal changed by 176.86% compared to cylindrical coal. The fractal dimension of the ScCO2 saturated coal samples obtained with LP-N2GA, MIP, and LF-NMR all show a decreasing trend, again confirming the modification of the coal pore surface by ScCO2. Finally, a conceptual model is presented to analyze the mechanism of the effect of coal sample scale on the pore structure under ScCO2. The difference in the transport paths of ScCO2 molecules at different coal scales is the main reason for the difference in the evolution of the pore structure. In addition, the impact of the amount of adsorption obtained in the laboratory using coal samples of different scales on the assessment of the CO2 storage capacity was discussed. Therefore, the results of this study are expected to provide a reference for the CO2 storage capacity assessment of the CO2-ECBM project.

Funder

National Natural Science Foundation of China

Henan Outstanding Youth Funds

National Postdoctoral Program for Innovative Talents

Henan University Scinence and Technology Innovation Team

Henan Provincial Science and Technology Research Project

Safety Discipline Creation Project of HPU

Henan Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3