Acoustic noise analysis in multiphase fluid flow patterns within circular pipe

Author:

Nair Adarsh R.1ORCID,Yoon Hyun Sik1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Pusan National University , 2, Busandaehak-ro 63beon-gil, Gumjeong-Gu, Busan 46241, Republic of Korea

Abstract

This study investigates the numerical exploration of acoustic noise generated by different flow patterns within a horizontal circular pipe, employing validated numerical methods such as large eddy simulation, continuous surface model, and the Ffowcs Williams–Hawkings acoustic model for simulating a complex three-dimensional multiphase fluid flow and acoustic noise. The research mainly focuses on the significant influence of flow patterns on acoustic noise generation through detailed analyses of pressure, velocity, and turbulent kinetic energy across three distinct source regions within the flow. Three flow patterns are examined. The stratified flow is characterized by the complete segregation of the two phases. The plug flow is defined by large, elongated bubbles typically moving in the axial direction with a periodic nature. The slug flow is characterized by the rapid formation of large, elongated gas bubbles separated by liquid phases. In the stratified flow, noise generation primarily stems from pressure fluctuations near phase interfaces. Plug flow exhibits noise due to bubble–surface interactions, particularly near the outlet. Slug flow generates noise from interactions between liquid waves and the pipe surface. Comparing sound pressure levels across flow patterns reveals higher noise levels in the plug and slug flows compared to the stratified flow, attributed to their disruptive nature. Total sound pressure level analysis indicates slug flow as the highest noise producer, highlighting phenomena such as interface breaking. The present study will contribute to effective mitigation strategies in engineering applications by providing an understanding of flow dynamics and noise generation mechanisms.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3