Dynamical conductance measurement of single molecular junctions with both high-speed and high-precision

Author:

Liu Haiyang1,Zhao Zhikai1,Zhao Xueyan1,Wang Maoning1,Zhao Tianran1,Xiang Dong1ORCID

Affiliation:

1. Institute of Modern Optics and Center of Single Molecule Sciences, Nankai University, Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China

Abstract

Real-time and rapid monitoring of the electron transport in nanoscale structures is critical for understanding many fundamental phenomena. However, it is not possible to rapidly record the dynamical current that varied across several orders of magnitude by using a typical linear low-noise current-to-voltage converter due to its fixed gain. In addition, it faces a great challenge in carrying out a dynamical small current measurement by using a commercial source-monitor unit device with both high-precision and high-speed because a high-precision measurement normally requests long integration time, while high-speed sampling demands short integration time. To overcome these challenges, we designed a measurement system with an integrated logarithmic amplifier, which can convert the current/conductance signal (varied across eight orders of magnitude) into an output voltage signal (varied within only one order of magnitude). We successfully applied it for the dynamical conductance measurement of single molecular break junctions in which the current rapidly changed from milliampere (mA) to picoampere (pA) within tens of milliseconds under a fixed bias voltage. It is demonstrated that the intrinsic conductance can be determined accurately independent of the applied bias and the real-time dynamical conductance traces can be precisely recorded with a high-speed sampling ratio. This logarithmic amplifier design and home-made measurement system provide a way to realize a fast measurement (30 kHz) for a rapidly varied current (mA–pA), making it suitable for the characterization of single-molecule junctions during the break process, and show potential for a wide application far beyond molecule electronics.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3