Characterizing the non-Newtonian viscosity of high-solids drilling fluid dispersions by flow loop

Author:

Yu Jianger1,Appleby Benjamin A.1ORCID,Mooney Michael A.2ORCID,Samaniuk Joseph R.1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA

2. Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA

Abstract

Increasing the speed of drilling operations is of commercial and military interest for transportation infrastructure as well as rapid installation of underground utilities in urban settings and over long distances. A significant challenge to increasing speed in horizontal directional drilling is pressure and flow rate management of drilling fluids circulating into and out of the borehole, removing solids cut free by the drill bit. The mixture of solids and drilling fluid results in a highly complex fluid dispersion, typically with a shear-thinning continuum. It is challenging to characterize the viscometric behavior of these dispersions, and such data are limited in the literature. It is increasingly important to understand and accurately model the viscosity of these dispersions since high drilling speeds increase the drilling fluid flow rate, approaching the pressure limits that borehole walls can withstand before failure. In this work, we characterize the viscometric properties of a drill test and model drilling fluid dispersion in a custom-built flow loop with solid concentrations up to 45 wt. %. The fluid viscosity is reported in terms of power-law parameters, which can be used to predict the pressure drop during real drilling conditions. We found a significant difference in the viscometric response between the drill test and model drilling fluid dispersions. The Shields parameter can capture the influence of solids settling on the measurable pressure losses. An important conclusion is that even model drilling fluid dispersions prepared with geotechnical data from a drill site may have significantly different viscometric characteristics than those relevant during a drilling operation.

Funder

Defense Advanced Research Projects Agency

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3