Selective adsorption of divalent and trivalent cations in porous electrodes

Author:

Kawai Yusuke1,Yamamoto Yuji1,Kiyohara Kenji12ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University 1 , Sanda, Hyogo 669-1337, Japan

2. Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST) 2 , Ikeda, Osaka 563-8577, Japan

Abstract

The capacitive deionization technology uses the electrochemical adsorption of ions in porous electrodes to desalinate seawater or brackish water. Recently, capacitive deionization has gained significant attention as a technology for selective adsorption of ionic species from multicomponent aqueous electrolytes. To investigate the mechanism of selective adsorption at the molecular level, we performed molecular dynamics simulations of aqueous electrolytes and porous electrodes with different divalent or trivalent ions, electrode pore sizes, and applied voltages. We calculated the free energy barriers preventing ions from entering the pores of the electrode and the structure of the water molecules near the ions and the electrode surface under various conditions. Our results suggest that, when the pore and ion sizes are comparable, the steric and electrostatic interactions between the hydrated ions and electrode pores are comparable in magnitude. Moreover, the relative importance of the two interactions can be reversed by slight changes in the external conditions, such as the ion size, valence of the ions, electrode pore size, and applied voltage. Thus, by finely tuning the electrode pore size and the applied voltage, it may be possible to selectively adsorb a particular ionic species from a multicomponent electrolyte through capacitive deionization using a porous electrode.

Funder

Steel Foundation for Environmental Protection Technology

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3