Increasing the scan speed in high resolution, low energy electron diffraction measurements by presetting the gate time

Author:

Kny Anna J.1ORCID,Sokolowski Moritz1ORCID,Kury Peter2ORCID

Affiliation:

1. Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn 1 , Wegelerstr. 12, 53115 Bonn, Germany

2. out-of-the-box systems GmbH 2 , Breddebuschhang 5c, 45257 Essen, Germany

Abstract

We report on a speed-up data acquisition routine for recording intensities in reciprocal space (k-space) with increased scan speed by a single point detector. It is designed for recording low energy electron diffraction (LEED) data with high resolution by a spot profile analysis LEED instrument. It counteracts the problem of long acquisition times that are encountered when larger areas in the reciprocal space are scanned. It exploits the fact that in typical LEED images of ordered surfaces, more than 90% of the data points in k-space belong to the low-intense background, which is often not of interest. Only about 10% of the data points are related to the relevant diffraction features, namely, the LEED spots. Often it is not necessary to measure the background with the same statistical significance as measuring those points that contain information. The data points belonging to the LEED spots can be discriminated from those of the background by their higher intensities. An acquisition routine that sets an increased gate time for the counting in response to higher intensities thus safeguards good statistics for data points of the LEED spots and saves measurement time when recording data points of the background with small gate times. For typical LEED images, a reduction of the total acquisition time by a factor of about 10 is obtained. We give examples of one- and two-dimensional scans from current experiments, recorded with and without the speed-up routine. We further discuss how the routine supports the measurement of energy dependent reciprocal space maps.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3