Design and performance evaluation of bionics-based combined blade for horizontal axis tidal current hydroturbine

Author:

Zhang Kaisheng1ORCID,Li Jing1,Gao Zhen1,Zhang Baocheng2ORCID

Affiliation:

1. College of Engineering, Ocean University of China, Qingdao 266100, China

2. Faculty of Engineering, College of Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Horizontal axis tidal current hydroturbines are widely used to extract tidal current energy. The blade is an important component of the hydroturbine, and its performance primarily depends on the airfoil pattern of the blade. Based on previous studies and elements of bionic technology, this study proposes a design method using bionic technology in the blade design to obtain a composite blade with NACA and shark airfoils and good hydrodynamic performance. An airfoil with a high lift-drag-ratio or a high torque coefficient is selected from multiple airfoil designs, and the optimal combination airfoil blade model is generated according to the blade element momentum theory and Wilson blade theory. The pressure and velocity fields of different combinations of the airfoil blades are investigated using numerical simulation and underwater experiments. The results demonstrate that the combined blade offers optimal performance when the pitch angle is 60°. Its torque coefficient and turbine speed are higher than those of conventional blades, and its energy coefficient is increased by approximately 14.5%.

Funder

State Key Laboratory of Ocean Engineering

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3