Effective operators and their variational principles for discrete electrical network problems

Author:

Beard K.1ORCID,Stefan A.2ORCID,Viator R.3,Welters A.2ORCID

Affiliation:

1. Louisiana State University 1 , Baton Rouge, Louisiana 70803, USA

2. Florida Institute of Technology 2 , Melbourne, Florida 32901, USA

3. Swarthmore College 3 , Swarthmore, Pennsylvania 19081, USA

Abstract

Using a Hilbert space framework inspired by the methods of orthogonal projections and Hodge decompositions, we study a general class of problems (called Z-problems) that arise in effective media theory, especially within the theory of composites, for defining the effective operator. A new and unified approach is developed, based on block operator methods, for obtaining solutions of the Z-problem, formulas for the effective operator in terms of the Schur complement, and associated variational principles (e.g., the Dirichlet and Thomson minimization principles) that lead to upper and lower bounds on the effective operator. In the case of finite-dimensional Hilbert spaces, this allows for a relaxation of the standard hypotheses on positivity and invertibility for the classes of operators usually considered in such problems by replacing inverses with the Moore–Penrose pseudoinverse. As we develop the theory, we show how it applies to the classical example from the theory of composites on the effective conductivity in the periodic conductivity problem in the continuum (2d and 3d) under the standard hypotheses. After that, we consider the following three important and diverse examples (increasing in complexity) of discrete electrical network problems in which our theory applies under the relaxed hypotheses. First, an operator-theoretic reformulation of the discrete Dirichlet-to-Neumann (DtN) map for an electrical network on a finite linear graph is given and used to relate the DtN map to the effective operator of an associated Z-problem. Second, we show how the classical effective conductivity of an electrical network on a finite linear graph is essentially the effective operator of an associated Z-problem. Finally, we consider electrical networks on periodic linear graphs and develop a discrete analog to the classical example of the periodic conductivity equation and effective conductivity in the continuum.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference49 articles.

1. K. Beard , “Relaxation of variational principles for Z-problems in effective media theory,” Master’s thesis, Florida Institute of Technology, Melbourne, FL, 2022.

2. Electrical conductivity in inhomogeneous media;AIP Conf. Proc.,1978

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3