Electromagnetic absorption properties of FexCoNi magnetic nano particles

Author:

Li Hong1,Li Hongyang1ORCID,Yang Feng1,Cai Qing1,Xu Wenqi1,Wang Ran1,Liu Ying1

Affiliation:

1. School of Materials Science & Engineering, Beijing Institute of Technology , Beijing 100081, China

Abstract

The microstructure morphology, static magnetic properties, and electromagnetic absorption characteristics of nano FexCoNi alloy particles prepared by chemical liquid deposition with five different Fe content levels are investigated in this paper. The results show that spherical FexCoNi alloy particles with an average particle size of about 100–200 nm and a face-centered cubic crystal structure were obtained. All five samples exhibited soft magnetic behavior, with the saturation magnetization intensity showing an increasing-then-decreasing trend with increasing Fe content, peaking at 141.8 emu/g for Fe content x = 1.0. The dielectric constants (real and imaginary parts) of the prepared alloy particles exhibit significant differences with respect to the variation of Fe content, while the changes in the real and imaginary parts of the magnetic permeability show less pronounced effects with increasing Fe content. As the electromagnetic wave frequency increases, the real parts of the dielectric constants for all composites show minimal fluctuations, and the real parts of the magnetic permeability exhibit a decreasing trend. Moreover, the imaginary parts of the dielectric constants and magnetic permeability show an increasing followed by a decreasing trend as the frequency rises. The material with Fe content x = 1 demonstrated optimal dielectric loss performance and relatively excellent magnetic loss performance, with a sample thickness of 1.9 mm exhibiting the highest reflection loss (RLmax) of −24.2 dB and an effective absorption bandwidth of 4.48 GHz.

Publisher

AIP Publishing

Reference41 articles.

1. In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance;Chem. Eng. J.,2020

2. Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials;J. Magn. Magn. Mater.

3. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers;Carbon,2020

4. Photon antibunching in resonance fluorescence;Concepts Quant. Opt.,1983

5. Microstructure and magnetic properties of Ni2(Mn,Fe)Ga Heusler alloys rapidly solidified by melt spinning;Metall. Mater. Trans. A,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3