Affiliation:
1. Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous, Shenzhen University 1 , Shenzhen 518060, China
2. Research Center for Humanoid Sensing, Zhejiang Laboratory 2 , Hangzhou 311100, China
Abstract
Photoacoustic microscopy with high spatial resolution and fast imaging acquisition allows observing dynamic processes of optical absorption-based microanatomic structures in three dimensions. An evanescent sensor accesses ultrasonic detection with high sensitivity and broad bandwidth while suffering from limited field of view (FOV), thus compromising the photoacoustic imaging acquisition rate. Here, we develop an optical-scanning evanescent sensor by fast deflection of the interrogation light along the interface of prism and water using a one-dimensional galvanometer, demonstrating excellent detection sensitivity of ∼132 Pa with a broadband frequency response of >140-MHz at an enlarged FOV of ∼2.90 × 0.19 mm2. Incorporating the optical-scanning evanescent sensor in photoacoustic microscopy, a volumetric image (∼3.0 × 0.25 × 1.0 mm3) with micrometer-scale spatial resolution is acquired within ∼2.5 s by synergistically scanning both photoacoustic illumination laser and sensor's interrogation light. High-speed imaging of flowing microparticles within a capillary tube offers the visualizations of the traveling processes in three dimensions. Potentially, the optical-scanning evanescent sensor allows photoacoustic microscopy accommodating to dynamic imaging at cellular level such as in vivo flow cytometry of circulating tumor cells.
Funder
National Natural Science Foundation of China
Science, Technology and Innovation Commission of Shenzhen Municipality
Natural Science Foundation of Guangdong Province
Major Scientific Project of Zhejiang Laboratory
Medical-Engineering Interdisciplinary Research Foundation of ShenZhen University
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献