The results of applying machine learning for improvement of well cementing

Author:

Shalyapin D. V.,Shalyapina A. D.

Publisher

AIP Publishing

Reference17 articles.

1. The applying of machine learning methods to improve the quality of well casing

2. Shaljapin D. V., Bakirova A. D. and Kuznecov V. G. 2020. Prospects for the development of a mathematical model to improve the quality of well casing at the sites of occurrence of Western Siberia. Status, trends and problems of development of the oil and gas potential of Western Siberia: materials of the reports of the International Academic Conference. – p 142–146.

3. Shaljapin D. V. and Bakirova A. D. 2020. Development of technological solutions for preparing the wellbore for cementing and improving the quality of casing using artificial intelligence for the Pyakyakhinskoye field. Problems of geology and development of mineral resources: Proceedings of the XXIV International Symposium named after academician M. A. Usov for students and young scientists dedicated to the 75th anniversary of the Victory in the Great Patriotic War. p 436–437.

4. Shaljapin D. V., Babushkin Je V. and Shaljapina A. D. 2020. Application of methods of mathematical analysis to improve the quality of well casing. Oil and gas: technologies and innovations: materials of the National Scientific and Practical Conference. V 3 volumes. Rep. editor N. V. Gumerova. p 107–110.

5. Shaljapin D. V., Shherbakov A. V. and Bakirova A. D. 2020. Development of technological solutions for the Pyakyakhinskoye place of occurrence to prepare the wellbore for cementing and improve the quality of casing using artificial intelligence. Bulatov readings: Sat. st., T. 3. p 372–376.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3