Enhanced dropwise condensation on downward-facing cross-shaped pillar-structured surfaces with mixed wettability

Author:

Tang ShiORCID,Li QingORCID,Li Wanxin,Chen ShoutianORCID

Abstract

In this paper, a novel downward-facing cross-shaped pillar-structured surface with mixed wettability is conceived for enhancing dropwise condensation. A three-dimensional thermal lattice Boltzmann model is employed to investigate the condensation performance on the downward-facing cross-shaped pillar-structured surface with mixed wettability and the associated enhancement mechanism of dropwise condensation. The numerical investigation shows that the cross-shaped pillar-structured surface with mixed wettability exhibits much better condensation performance than the square pillar-structured surface with mixed wettability and the flat surface with mixed wettability due to the synergistic effects of structural effects and mixed wettability, which can promote the droplet nucleation and accelerate the condensate removal. Moreover, for different contact angles of the pillar top (θtop), there exists a competition between the droplet nucleation and the condensate removal on the downward-facing cross-shaped pillar-structured surface. It is found that, when θtop=60°, an optimal droplet dripping rate can be achieved due to a suitable balance between a relatively large mass of detached droplets and a short condensation cycle time. Furthermore, the aspect ratio (γ) has an important influence on the droplet dripping rate, i.e., as γ increases, the droplet dripping rate first exhibits small fluctuations, then increases rapidly before γ=1.0, and after that experiences a slight variation. The large droplet dripping rate achieved at γ=1.0 is mainly attributed to the fact that an optimum structure of the concave corner can promote the droplet nucleation, increase the length of the triple-phase contact line, advance the appearance of droplet coalescence, and finally accelerate the condensate removal.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3