Scanning probe microscopy in the age of machine learning

Author:

Rahman Laskar Md Ashiqur1ORCID,Celano Umberto1ORCID

Affiliation:

1. School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, USA

Abstract

Scanning probe microscopy (SPM) has revolutionized our ability to explore the nanoscale world, enabling the imaging, manipulation, and characterization of materials at the atomic and molecular level. However, conventional SPM techniques suffer from limitations, such as slow data acquisition, low signal-to-noise ratio, and complex data analysis. In recent years, the field of machine learning (ML) has emerged as a powerful tool for analyzing complex datasets and extracting meaningful patterns and features in multiple fields. The combination of ML with SPM techniques has the potential to overcome many of the limitations of conventional SPM methods and unlock new opportunities for nanoscale research. In this review article, we will provide an overview of the recent developments in ML-based SPM, including its applications in topography imaging, surface characterization, and secondary imaging modes, such as electrical, spectroscopic, and mechanical datasets. We will also discuss the challenges and opportunities of integrating ML with SPM techniques and highlight the potential impact of this interdisciplinary field on various fields of science and engineering.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3