Elucidating proximity magnetism through polarized neutron reflectometry and machine learning

Author:

Andrejevic Nina12ORCID,Chen Zhantao13,Nguyen Thanh14ORCID,Fan Leon5,Heiberger Henry5,Zhou Ling-Jie6ORCID,Zhao Yi-Fan6,Chang Cui-Zu6,Grutter Alexander7ORCID,Li Mingda14ORCID

Affiliation:

1. Quantum Measurement Group, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

4. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

6. Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

7. National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, USA

Abstract

Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge for parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator–ferromagnetic insulator heterostructure Bi2Se3/EuS exhibiting proximity magnetism in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator–antiferromagnet heterostructure (Bi,Sb)2Te3/Cr2O3and identify possible interfacial proximity magnetism in this material. We anticipate that the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems.

Funder

U.S. Department of Energy

National Science Foundation

Army Research Office (ARO) Young Investigation

Gordan and Betty Moore Foundation's EPiQS Initiative

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3