Geometric optimization of double layered microchannel with grooves array for enabling nanoparticle manipulation

Author:

Abstract

Microfluidic manipulation has been widely applied in bio-chemical research and applications, including bacteria/cell/protein mixing, separation, focusing, concentration, and trapping. One of the current severe challenges of this technique is to manipulate particles smaller than micrometer scale. In addition to multi-physical assists like acoustic and electrical fields, optimization of a structural design is a promising way to improve the functional capability of a microchannel. In our recent work, we built a robust and versatile numerical simulation model, validated with experiments, to reveal the mechanism of inertial microfluidic particle focusing within the double layered microchannel. In this study, a comprehensive investigation on the (geometrical and dimensional) optimization was further conducted with various numerical case studies. Based on the results, the fundamentals of the double layered microchannel with grooves were deeply revealed. In detail, the effects of microchannel geometric characteristics were discussed, including aspect ratio, groove curve radius, and groove spacing. In addition, an optimization strategy of geometrical and dimensional design was proposed to deeply exploit the manipulating potential of the microchannel. Based on the simulating calculation, the proposed optimized design of microchannel can remarkably improve the manipulating performance breaking through the manipulating limitation of manipulatable microparticle size, from microscale (4–10 μm) into nanoscale (500–800 nm), compared with the conventional microchannel.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Guangdong Provincial Pearl River Talents Program

Natural Science Foundation of Shenzhen City

Natural Science Foundation of Tianjin City

Natural Science Foundation of Hebei Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3